The Molecular Structure of Δ -cis- α -[(S)-N,N'-Bis(2-pyridylmethyl)-propylenediamine]dichlorochromium(III) Chloride

Yasuo Hata, [†] Yukihiro Yamamoto, ^{*} and Yoichi Shimura

Department of Chemistry, Faculty of Science, Osaka University, Toyonaka, Osaka 560

[†]Institute for Protein Research, Osaka University, Yamadakami Suita, Osaka 565

(Received September 5, 1980)

Synopsis. The molecular structure of Δ -cis- α -[CrCl₂-(S-picpn)]⁺ (S-picpn=(S)-N, N'-bis(2-pyridylmethyl) propylenediamine) was determined by X-ray analysis, the absolute configuration being confirmed to coincide with that assigned from the circular dichroism spectrum.

Two diastereomers, $(+)_{600}^{CD}$ and $(-)_{600}^{CD}$ ones of cis- α - $[CrCl_2(S\text{-picpn})]^+$ complex (S-picpn=(S)-N,N'-bis(2-pyridylmethyl) propylenediamine), were isolated and their absolute configurations assigned from the circular dichroism (CD) spectra. The present note deals with the X-ray structure analysis of a chloride of the more stable isomer, $(+)_{600}^{CD}$ one, which has been assigned to a Δ configuration from its CD spectrum.

Experimental

Ruby-red needle-like single crystals suitable for X-ray analysis were prepared by slow evaporation of an aqueous solution of the complex $(+)_{600}^{CD}$ -[CrCl₂(S-picpn)]Cl at room temperature. Systematic absence indicated the monoclinic space group P2₁. Unit cell dimensions obtained by leastsquares refinement of the setting angles of 11 reflections measured on a diffractometer were a=8.46 (2), b=15.68 (1), c=7.20 (1) Å and $\beta=103.6$ (1) °. The observed density 1.48 g cm⁻³ (by flotation in benzene-carbon tetrachloride) coincides with the calculated value 1.48 g cm⁻³ for Z=2. A crystal of the dimension $0.36 \times 0.15 \times 0.11$ mm was used for the intensity measurement. Intensities were measured on a Rigaku automated four-circle diffractometer with graphitemonochromated Mo $K\alpha$ radiation ($\lambda = 0.71069 \text{ Å}$). The θ — 2θ scan mode with a scan speed of $4 \circ \min^{-1}$ in 2θ was employed. The scan range was calculated to be $(1.0+0.35 \tan \theta)^{\circ}$. Intensities of 1704 independent reflections were collected in the range $1.0 \le 2\theta \le 50.0^{\circ}$. Of these reflections 209 were measured as $|F_0| = 0.0$. The intensities were corrected for Lorentz and polarization factors. No absorption correction was made $[\mu(\text{Mo }K\alpha)=1.072 \text{ mm}^{-1}].$

The structure was solved by the heavy atom method. The

positions of chromium and two coordinated chlorine atoms were determined from a Patterson map. An electron density map based on the phases calculated from these atomic parameters revealed all the non-hydrogen atoms. The parameters were refined by the block-diagonal least-squares program HBLS-5,²) with anisotropic thermal factors. The reliability factors $R=\sum ||F_o|-|F_e||/\sum |F_o|$ and $Rw=[\sum w-(|F_o|-|F_e|)^2/\sum w|F_o|^2]^{1/2}$ were 0.077 and 0.088, respectively, for 1495 non-zero reflections. The final weighting scheme for minimization of $\sum w(|F_o|-|F_e|)^2$ was $w=[\sigma^2(F_o)+0.00022|F_o|+0.00357|F_o|^2]^{-1/2}$. The positions of the hydrogenes were not determined.

Results and Discussion

Final atomic parameters, bond distances and angles are given in Tables 1, 2, and 3, respectively. The F_0-F_0 data and final thermal parameters are deposited as Document No. 8119 at the Office of the Chemical Society of Japan. The quadridentate ligand takes an α configuration, the two chloro ligands occupying cis positions. There is no significant difference between the distances of chromium to amine nitrogens and chromium to pyridine nitrogens. Angles N(1)-Cr-N(2) of the central chelate ring and Cl(1)-Cr-Cl(2) are 83.9° and 95.1°, respectively, the coordination geometry being slightly distorted from a regular octahedron.

A stereoscopic view of the complex cation drawn by PLUTO⁴) is shown in Fig. 1. The absolute configuration of the complex was determined during the course of synthesis from the fact that the asymmetric carbon atom C(8) adopts the (S)-configuration, $^{1)}$ without using the anomalous dispersion technique. The Δ configuration coincides with that assigned from the CD data. $^{1)}$

The least-squares planes and the dihedral angles between the planes are given in Table 4. The two

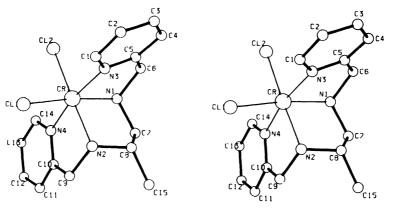


Fig. 1. Stereoview of the complex cation Δ-cis-α-[CrCl₂(S-picpn)]⁺ and the numbering scheme of the atoms.

Table 1. Final positional parameters and their standard deviations (in parentheses)

•	-	x	y	z	$B_{\rm eq}^{\rm a)}/{\rm \AA}$
-	Cr	0.1947(2)	0	0.4004(2)	1.60
	Cl(1)	0.1647(4)	0.0850(2)	0.1363(4)	2.82
	Cl(2)	0.4313(3)	-0.0645(2)	0.3632(5)	2.93
	Cl(3)	-0.1864(6)	0.2333(2)	0.3428(7)	6.21
	N(1)	0.1980(11)	-0.0676(7)	0.6457(13)	2.85
	N(2)	-0.0217(10)	0.0481(15)	0.4433(12)	1.70
	N(3)	0.3300(10)	0.0837(6)	0.5937(14)	2.82
	N(4)	0.0400(11)	-0.0916(6)	0.2499(13)	2.27
	C(1)	0.3756(17)	0.1631(8)	0.5510(20)	4.00
	C(2)	0.4783(17)	0.2090(10)	0.6928(22)	4.66
	C(3)	0.5314(17)	0.1773(11)	0.8762(22)	4.96
	C(4)	0.4811(15)	0.0980(10)	0.9181(20)	4.23
	C(5)	0.3862(13)	0.0497(8)	0.7721(17)	2.79
	C(6)	0.3415(15)	-0.0407(9)	0.8040(16)	3.09
	C(7)	0.0371(15)	-0.0578(8)	0.6997(18)	3.06
	C(8)	-0.0258(13)	0.0328(7)	0.6473(15)	2.30
	C(9)	-0.1619(12)	0.0139(7)	0.2928(15)	2.29
	C(10)	-0.1181(12)	-0.0722(7)	0.2224(15)	2.15
	C(11)	-0.2387(16)	-0.1261(9)	0.1180(19)	3.53
	C(12)	-0.1951(17)	-0.2015(10)	0.0404(23)	4.85
	C(13)	-0.0275(17)	-0.2201(8)	0.0687(21)	3.92
	C(14)	0.0854(16)	-0.1649(8)	0.1794(17)	3.03
	C(15)	-0.1933(15)	0.0475(10)	0.6921(17)	3.60

a) $B_{\rm eq}$ is calculated by the method of Hamilton.³⁾

TABLE 2. BOND DISTANCES (Å) AND THEIR STANDARD DEVIATIONS (IN PARENTHESES)

Cr-Cl(1)	2.286(3)	C(6)-N(1)	1.52(2)
Cr-Cl(2)	2.314(4)	N(1)-C(7)	1.51(2)
Cr-N(1)	2.06(1)	C(7)-C(8)	1.53(2)
Cr-N(2)	2.07(1)	C(8)-C(15)	1.54(2)
Cr-N(3)	2.06(1)	C(8)-N(2)	1.50(1)
Cr-N(4)	2.07(1)	N(2)-C(9)	1.51(1)
N(3)-C(1)	1.36(2)	C(9)-C(10)	1.53(2)
C(1)-C(2)	1.38(2)	C(10)-C(11)	1.40(2)
C(2)-C(3)	1.38(2)	C(11)-C(12)	1.39(2)
C(3)-C(4)	1.37(2)	C(12)-C(13)	1.42(2)
C(4)-C(5)	1.39(2)	C(13)-C(14)	1.39(2)
C(5)-N(3)	1.37(2)	C(14)-N(4)	1.35(2)
C(5)-C(6)	1.50(2)	N(4)-C(10)	1.34(1)

terminal chelate rings take distorted λ envelope conformations. The two pyridine rings are nearly planar within error and make an angle 75.9° with each other. The two planes P1 and P3 are nearly perpendicular to plane P2. The central chelate ring CrN(1)C(7)C(8)N(2) has a distorted δ conformation with an equatorial methyl carbon C(15), carbon C(8) being more deviated than C(7) from plane P2.

References

- 1) Y. Yamamoto and Y. Shimura, Bull. Chem. Soc. Jpn., 53, 395 (1980).
- 2) T. Ashida (1973), "The Universal Crystallographic Computing System-Osaka," The Computation Center, Osaka Univ, pp. 55—61.
 - 3) W. C. Hamilton, Acta Crystallogr., 12, 609 (1959).

Table 3. Bond angles (in degrees) and their standard deviations (in parentheses)

STANDARD DEVIATIONS (IN PARENTHESES)					
Cl(1)- Cr - $Cl(2)$	95.1(1)	N(3)-C(1)-C(2)	118.2(13)		
Cl(1)- Cr - $N(1)$	172.7(3)	C(1)-C(2)-C(3)	121.8(15)		
Cl(1)- Cr - $N(2)$	89.0(3)	C(2)-C(3)-C(4)	119.1(15)		
Cl(1)- Cr - $N(3)$	97.3(3)	C(3)-C(4)-C(5)	119.0(14)		
Cl(1)- Cr - $N(4)$	92.1(3)	C(4)-C(5)-N(3)	120.6(12)		
Cl(2)- Cr - $N(1)$	92.1(3)	C(5)-N(3)-C(1)	121.0(11)		
Cl(2)- Cr - $N(2)$	175.2(3)	C(4)-C(5)-C(6)	121.5(12)		
Cl(2)- Cr - $N(3)$	89.9(3)	N(3)-C(5)-C(6)	117.9(11)		
Cl(2)- Cr - $N(4)$	95.4(3)	C(5)-C(6)-N(1)	109.5(11)		
N(1)-Cr- $N(2)$	83.9(4)	C(6)-N(1)-C(7)	113.0(10)		
N(1)-Cr- $N(3)$	81.7(4)	N(1)-C(7)-C(8)	108.3(10)		
N(1)-Cr- $N(4)$	88.3(4)	C(7)-C(8)-C(15)	111.7(11)		
N(2)-Cr- $N(3)$	92.2(4)	C(7)-C(8)-N(2)	107.6(9)		
N(2)-Cr- $N(4)$	81.8(4)	C(15)-C(8)-N(2)	114.5(10)		
N(3)-Cr- $N(4)$	168.8(4)	C(8)-N(2)-C(9)	117.0(8)		
Cr-N(1)-C(6)	110.4(8)	N(2)-C(9)-C(10)	110.1(9)		
Cr-N(1)-C(7)	109.7(8)	C(9)-C(10)-C(11)	120.8(11)		
Cr-N(2)-C(8)	108.2(6)	C(10)-C(11)-C(12)	120.0(13)		
Cr-N(2)-C(9)	109.8(6)	C(11)-C(12)-C(13)	117.9(14)		
Cr-N(3)-C(1)	125.0(9)	C(12)-C(13)-C(14)	119.0(13)		
Cr-N(3)-C(5)	113.7(8)	C(13)-C(14)-N(4)	121.8(12)		
Cr-N(4)-C(10)	114.0(7)	C(14)-N(4)-C(10)	120.0(10)		
Cr-N(4)-C(14)	126.0(8)	N(4)-C(10)-C(11)	121.3(11)		
		N(4)-C(10)-C(9)	117.7(10)		

Table 4. The least-squares planes with displacements of atoms from the planes (Å) $X=ax+cz\cos\beta$, Y=by, and $Z=cz\sin\beta$.

DI DI			-			
Plane P1						
-0.883	-0.8830X + 0.4615Y + 0.0863Z = -0.6157					
\mathbf{Cr}	0	N(1)	0	N(3)	0	
C(5)	-0.2925	C(6)	-0.5461			
Plane P2						
0.3815.	X+0.7455	Y+0.54	465Z = 1.90	13		
\mathbf{Cr}	0	N(1)	0	N(2)	0	
C(7)	0.2326	C(15)	-0.2301	C(8)	-0.4572	
Plane P3	Plane P3					
0.0855	X+0.5475	Y - 0.83	324Z = -2.	2486		
\mathbf{Cr}	0	N(2)	0	N(4)	0	
C(9)	0.5033	C(10)	0.2160			
Plane P4	(Pyridine	Ring)				
0.8815	0.8815X - 0.3913Y - 0.2644Z = -0.0408					
C(1)	0.0020	C(2)	0.0131	C(3)	-0.0092	
C(4)	-0.0373	C(5)	0.0387	N(3)	0.0062	
Plane P5 (Pyridine Ring)						
0.2433X + 0.4896Y - 0.8373Z = -2.1955						
C(10)	0.0040	C(11)	-0.0042	C(12)	-0.0066	
C(13)	0.0181	C(14)	-0.0193	N(4)	0.0083	
Dihedral angles between planes (°)						
P1 \(\triangle \text{P2} \text{93.11} \text{P2} \text{P4 84.27}						
			P2 ∧ 1			
			P 3 ∧ 3			
	P1 / P5	93.50	P3 ∧ 3	P5 9.64	4	
	P2 / P3	89.19	P4 ∧ 1	P5 75.8	7	

4) W. D. Motherwell (1976). *PLUTŌ*. A program for plotting molecular and crystal structures. University Chemical Laboratory, Cambridge, England.